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ABSTRACT

A Multi-layer Perceptron Neural Network methodology is used

to classify eight types of large-scale cloud patterns. The data

are taken from GOES-W visible images from Oct. 1 - Dec. 31, 1983.

Large-scale features are previously identified by a human expert

to prcvide a data set for supervised learning. Discriminant

Analysis is used to reduce the set of network inputs and as a

coTpa:-iscn classification methodology. In three different tests,

the neural network technique classifies the cases with consist-

ently higher accuracy than Discriminant Analysis. The problem cf

image segmentation is addressed in a preliminary test of the

Hierarchical Stepwise Optimization algorithm.
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APPLICATION OF NEURAL NETWORKS TO
LARGE-SCALE CLOUD PATTERN RECOGNITION

1. Introduction

In a previous study Peak (1990) proposed the use of neural

netwcrks for the interpretation of certain cloud features on

satellite images. That paper includes a preliminary experiment

in which large-scale cloud patterns (fronts, cirrus and vortices)

on GOES infrared images are distinguished using a neural network.

The preliminary experiment was designed to explore the use of

neural nets with simple areal cloudiness percentages as inputs.

The success of that simplified approach led to the proposal of a

more advanced approach using cloud-type inputs instead of cloud

percentages.

The purpose of this paper is to document this new approach

for neural classification of large-scale cloud features. The

reader is referred to Peak (1990) for background information on

neural networks including a comparison cf several types of neural

networks and a mathematical description of the multi-layer per-

ceptron nets used here.

The data used in this study are described in the next sec-

tion. An initial screening of the network inputs using stepwise

discriminant analysis is described in Section 3. In Section 4

the neural net derivation will be described including the network

results on test data. In Section 5 the problem of automated

image segmentation is addressed. Finally, the conclusions of

this study and suggestions fcr future research will be presented.

2. Data description

As described in Peak (1990), multi-layer perceptron neural

networks require a set of training cases with known outputs.



These cases are used in a supervised-learning mode to derive the

network weights. In this section the data used for training and

testing the neural net will be presented.

As in the previous study (Peak, 1990), GOES imagery is used

because of its wide field of view. Since TESS*does not receive

GOES imagery, the problem of using polar-orbiting imagery must

eventually be addressed. However, for these preliminary studies

the more important issue is to determine the feasibility of using

neural nets to accomplish image feature classifications. There-

fore it was decided, with the approval of the User Project Manag-

er, to continue using GOES data for these initial studies.

In this study archived GOES-West images were acquired from

the period October-December 1983. The 2045 UTC visible and IR

imaces were selected every three days beginning Oft. 1, yielding

31 western North Pacific scenes containing various large-scale

cloud features. Because the multi-layer perceptron neural net-

work is trained using supervised learning (Peak, 1990), it was

necessary that the large-scale features in these images be clas-

sified a priori. In addition, the types of clouds present had to

be determined to provide inputs for the network. The ideal

method of determining the cloud types would be to use an objec-

tive cloud classification scheme. Unfortunately, the methods

currently under development have not yet reached a sufficient

level of capability to be used for this experiment. Therefore it

was decided, again with the approval of the User Project Manager,

to use cloud and feature classifications performed by an image

int~rpretation expert. In future studies, these steps would have

* Tactical Environmental Support System
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to be accomplished by automated processes. However, for the

purpose of this study this approach can be likened to a "perfect

prog" because an automated approach would probably include some

erroroneous classifications.

The large-scale feature identification and cloud-typing of

these images was kindly performed by Mr. R. Fett of NOARL-W. The

eight large-scale feature types he identified and the number of

occurrences of each are presented in Table 1. Some features that

were labeled differently on different images have been combined

intc the same category. For example, features labeled "Frontal

band" are concidered the same type as those labeled "Cold Front."

Similarly, "Trough" and "Upper cold low" were combined, as were

"Stratocumulus" and "Open cells," "Tropical cyclone" and "Hurri-

cane," and "Cirrus" and "Jet cirrus." Notice also that there is

a distinction between frontal bands with a vortex at the northern

end and those with no vortex (Table 1). There were also a few

other features that were excluded hecause they appeared only once

in the data set.

Table 1. Large-scale cloud feature types and number of occur-
rences of each type identified in the GOES-W image set.

F ATUPE NUMBER
Frontal band/Cold front (no vortex) 37
Frontal band/Cold front (with vortex) 10
Trough/Upper cold low 12
Stratocumulus/Open cells 53
Fog 9
Tropical cyclone/Hurricane 8
Cirrus/Jet cirrus 7
ITCZ 36
Total 172
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The next task is to define the inputs to the neural net. As

in the first experiment (Peak, 1990) the procedure is to keep the

data used as simple as possible. If the results indicate that

the information in the network inputs is inadequate, then more

complex predictor information can always be included later.

A specific goal of this study is to use the type of cloud as

an input for the network. The cloud type categories identified

by Mr. Fett are "High," "Low," "Multi-layer" and "Stratocumulus."

Obviously, the "Stratocumulus" feature-type (Table 1) contains

that particular cloud-type. However, it would be meaningless to

iden:ify the "Stratcun'-ulus" cloud feature by telling the neural

network that it is made up of stratocumulus clouds. Since

"Stratocumulus" is the only meteorological cloud type included,

it was decided that the cloud type predictor should be "Low" for

that feature.

Each cloud type is assigned to a correszonding network input.

If the cloud type is pre:ent in the feature at hand, the input is

assigned the value 1.0; otherwise the input is 0.0. If a feature

contains regions of different types of clouds, more than one

input could be assigned the 1.0 value. For example, some frontal

bands have multi-layer clouds at their northern end and low

clouds at their southern end.

It seems reasonable that the identification of a cloud fea-

ture requires some information about its shape. As a very rough,

first estimate of shape it was decided to include the zonal and

merilional dimensions (in degrees longitude and latitude, respec-

tivcly) of each feature. Intuitively, this shape measure should
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probably be inadequate for some features, but as will be seen

latcr, it suffices qu Lte well for this experiment when combined

with the other information at hand.

Because it was found to be important in the preliminary

study (Peak, 1990), the northmost latitude of the cloud feature

is also included as an input. When combined with the zonal and

meridicnal dimensions and the three cloud types, the northmost

latitude provides a total of six inputs for the neural network.

There are many other potential inputs that could be included, but

these six were considered a good set with which to start the

ana:ysis. The cooplete set of 172 cases including input values

and feature type is presented in Table 2.

Table 2. Initial case set for large-scale neural net develop-
ment. Date and Label are included for reference, Del-x and Del-y
dencte zonal and meridional di-ensions (degrees/bO0), Mult, High
and Low denote cloud type presence, North is northmost extent of
the feature (degrees latitude/100) and Type is large-scale fea-
ture class.

Date Label Del-x Del-v >ut aH LoN orth Type
Oct 1 a-b 0.55 0.40 1 0 0 0.60 Front(nv)
Oct 1 a-2 0.15 0.10 0 1 0 0.30 Trough
Oct 1 a-3 0.40 0.30 0 0 1 0.45 Stratocu
Oct 1 a-4 0. 25 0 .25 1 0 0 0.45 Front(v)
Oct 1 a-5 007 07rf 0 1 0 0.1S Trough
Oct 1 a-6 1.05 0.10 1 0 0 0.15 ITCZ
Oct 1 a-7 0.10 0.10 1 0 0 0.15 Trop Cyc
Oct 4 b-I 0.55 n.125 1 0 0 C. 5 rront(nv)
Oct 4 b-2 0.35 .20 0 0 1 0.57 Stratocu
Oct 4 b-3 0.10 i.05 0 0 1 0.40 Fcj
Oct 4 b-4 0.40 0.15 0 C 1 0 .5 Stratocu
Oct 4 b-5 0.15 0.15 1 G 1 .4 C:rrus
Oct 4 b-6 0.03 0.03 1 - :'ro Cyc
Oct 4 b-7 i.10 0.15 0 7 . . -_TIZ
Oct 7 c-2 0.30 0 .23 1 1
Oct 7 c-3 0.04 0. , - . -

Oct 7 c-4 0.05 0. 1
Oct 7 C-5 0.03 0.>. i
Oct 7 C-6 0.25 0..
Oct 7 c-7 0.1 0.1



Table 2 (continued).

Oct 7 c-8 1.00 0.15 1 0 0 0.15 ITCZ

Oct 10 d-1 0.35 0.35 1 0 0 0.60 Cirrus

Oct 10 d-2 0.20 0.20 0 0 1 0.50 Stratocu

Oct 10 d-3 0.25 0.20 0 1 0 0.45 Trough

Oct 10 d-4 0.15 0.10 0 0 1 0.25 Stratocu

Oct 10 d-5 0.15 0.10 1 0 0 0.15 Trop Cyc

Oct 10 d-6 0.65 0.15 1 0 0 0.15 ITCZ

Oct 10 d-7 0.30 0.15 1 0 0 0.15 ITCZ

Oct 13 e-1 0.40 0.35 1 0 1 0.60 Front(nv)

Oct 13 e-2 0.30 0.25 1 0 1 0.50 Front(nv)

Oct 13 e-3 0.15 0.20 0 0 1 0.50 Stratocu

Oct 13 e-4 0.20 0.15 0 0 1 0.28 Stratocu

Oct 13 e-5 0.35 0.25 0 1 0 0.45 Trough

Oct 13 e-6 0.10 0.10 1 0 0 0.23 Trop Cyc

Oct 13 e-7 0.55 0.10 1 0 0 0.15 ITCZ

Oct 13 e-8 0.50 0.15 1 0 0 0.10 ITCZ

Oct 13 e-9 0.10 0.08 1 0 0 0.18 Trcp Cyc

Oct 16 f-1 0.30 0.25 0 0 1 0.60 Stratocu

Oct 16 f-2 0.45 0.30 1 0 1 0.60 Frcnt(nv)

Oct 16 f-3 0.25 0.15 0 1 0 0.50 Trough

Oct 16 f-4 0.10 0.10 0 1 0 0.30 Trough

Oct 16 f-5 0.10 0.15 1 0 0 0.25 Trop Cyc

Oct 16 f-6 0.30 0.25 0 0 1 0.38 Stratocu

Oct 16 f-7 0.08 0.10 1 0 0 0.23 Trop Cyc

Oct 16 f-3 0.35 0.10 1 0 0 0.15 ITCZ

Oct 16 f-9 0.55 0.10 1 0 0 0.13 ITCZ

Oct 19 g-I 0.55 0.25 1 0 0 0.55 Front(nv)

Oct 1D g-2 0.30 0.15 0 0 1 0.60 Stratocu

Oct 19 g-3 0.40 0.35 1 0 0 0.60 Front(nv)

Oct 19 g-4 0.40 0.25 0 0 1 0.38 Stratocu

Crt 19 g-5 0.75 0.10 1 0 0 0.15 ITCZ

Oct 22 h-1 0.10 0.10 0 1 0 0.50 Trough

Oct 22 h-4 0.45 0.20 0 0 1 0.35 Stratocu

Oct 22 h-5 0.10 0.13 0 0 1 0.40 Fog

Oct 22 h-6 1.05 0.10 1 0 0 0.15 ITCZ

Oct 25 i-i 0.30 0.30 0 0 1 0.60 Stratocu

Oct 25 i-2 0.50 0.30 1 0 1 0.55 Front(nv)

Oct 25 i-3 0.15 0.10 0 0 1 0.35 Stratocu

Oct 25 i-4 0.40 0.15 0 0 1 0.25 Stratocu

Oct 25 i-6 0.45 0.10 1 0 0 0.10 ITCZ

Oct 25 i-7 0.50 0.10 1 0 0 0.15 ITCZ

Oct 28 j-1 0.25 0.20 0 0 1 0.55 Stratocu

Oct 28 j-2 0.45 0.25 1 0 1 0.50 Front(nv)

Oct 28 j-3 0.40 0.15 0 0 1 0.30 Stratocu

Oct 28 j-4 0.40 0.30 1 0 0 0.40 Front(nv)

Oct 28 j-5 0.45 0.10 1 0 0 0.15 ITCZ

Oct 28 j-6 0.65 0.10 1 0 0 0.10 ITCZ

Oct 31 k-I 0.50 0.30 1 0 0 0.60 Front(nv)

Oct 31 k-2 0.25 0.30 1 0 0 0.55 Front(nv)

Oct 31 k-3 0.85 0.10 1 0 0 0.15 ITCZ

Nov 3 1-1 0.50 0.20 1 0 0 0.45 Front(nv)

Nov 3 1-2 0.35 0.25 0 0 1 0.55 Stratocu
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Table 2 (continued).

Nov 3 1-3 0.40 0.30 1 0 0 0.55 Front(nv)
Nov 3 1-4 0.15 0.10 0 0 1 0.38 Fog
Nov 3 1-5 0.40 0.15 0 0 1 0.28 Stratocu
Nov 3 1-6 0.90 0.10 1 0 0 0.15 ITCZ
Nov 6 m-I 0.60 0.25 1 0 1 0.50 Front(nv)
Nov 6 m-2 0.20 0.20 0 0 1 0.55 Stratocu
Nov 6 m-3 0.10 0.10 1 0 0 0.55 Trough
Nov 6 n-4 0.20 0.10 0 0 1 0.30 Stratocu
Nov 6 m-5 0.95 0.10 1 0 0 0.15 ITCZ
Nov 6 m-6 0.25 0.10 0 1 0 0.20 Cirrus
Nov 9 n-i 0.25 0.25 0 0 1 0.55 Stratocu
Nov 9 n-2 0.20 0.60 1 0 1 0.45 Front(nv)
Nov 9 n-3 0.15 0.15 0 0 1 0.35 Fog
Nov 9 n-4 0.95 0.10 1 0 0 0.15 ITCZ
Nov 12 o-i 0.45 0.25 1 0 0 0.50 Front(nv)
Nov 12 o-2 0.25 0.10 1 0 0 0.45 Front(v)
Nov 12 o-3 0.35 0.20 1 0 1 C.40 Front(nv)
Nov 12 o-4 0.10 0.10 0 0 1 0.30 Stratocu
Nov 12 o-5 1.00 0.10 1 0 0 0.15 ITCZ
Nov 15 p-i 0.55 0.30 1 0 0 0.55 Front(v)
Nov 15 p-2 0.20 0.10 0 0 1 0.55 Stratocu
Nov 15 p-3 0.15 0.20 0 0 1 0.55 Stratocu
Nov 15 p-4 0.40 0.30 1 0 1 0.55 Front(nv)
Nov 15 p-5 0.15 0.15 0 0 1 0.30 Stratocu
Nov 15 p-6 1.05 0.20 1 0 0 0.15 ITCZ
Nov 18 q-i 0.50 0.40 0 0 1 0.60 Stratocu
Nov 18 q-2 C.50 0.40 1 0 0 0.55 Front(v)
Nov 18 q-3 0.10 0.10 0 0 1 0.40 Fog
Nov 18 q-4 0.40 0.15 0 0 1 0.30 Stratocu
Nov 18 q-5 0.90 0.15 1 0 0 0.15 ITCZ
Nov 21 r-1 0.55 0.40 1 0 0 0.65 Front(v)
Nov 21 r-2 0.30 0.30 0 0 1 0.50 Stratocu
Nov 21 r-3 0.30 0.25 1 0 1 0.45 Front(nv)
Nov 21 r-4 0.25 0.20 0 0 1 0.30 Stratocu
Nov 21 r-5 0.95 0.10 1 0 0 0.15 ITCZ
Nov 24 s-I 0.45 0.35 1 0 1 0.55 Front(nv)
Nov 24 s-2 0.15 0.20 0 0 1 0.50 Stratocu
Nov 24 s-3 0.40 0.25 1 0 1 0.45 Front(nv)
Nov 24 s-4 0.90 0.20 1 0 0 0.20 ITCZ
Nov 27 t-1 0.25 0.15 1 0 0 0.45 Front(v)
Nov 27 t-2 0.10 0.15 6 0 1 0.45 Stratocu
Nov 27 t-3 0.20 0.35 1 0 0 0.55 Front(nv)
Nov 27 t-4 0.20 0.2D 0 0 1 0.55 Fog
Nov 27 t-5 0.20 0.15 0 0 1 0.35 Stratocu
Nov 27 t-6 0.20 j-35 1 0 1 0.40 Front(nv)
Nov 27 t-7 1.05 0.15 1 0 0 0.15 ITCZ
Nov 30 u-I 0.25 0.15 0 0 1 0.50 Stratocu
Nov 30 u-2 0.55 0.40 1 0 1 0.60 Front(v)
Nov 30 u-3 0.15 0.10 0 0 1 0.30 Stratocu
Nov 30 u-4 0.35 0.20 1 0 1 0.45 Front(nv)
Nov 30 u-5 0.15 0.05 0 0 1 0.30 Stratocu
Nov 30 u-6 0.35 0.10 1 0 0 0.15 ITCZ
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Table 2 (continued).

Dec 3 v-i 0.25 0.15 1 0 0 0.40 Front(nv)

Dec 3 v-2 0.45 0.30 1 0 1 0.50 Cirrus

Dec 3 v-3 0.20 0.25 0 0 1 0.55 Stratocu

Dec 3 v-4 0.25 0.25 1 0 1 0.50 Front(nv)

Dec 3 v-5 0.30 0.15 0 0 1 0.30 Stratocu

Dec 3 v-6 0.70 0.15 1 0 0 0.15 ITCZ

Dec 6 w-1 0.20 0.15 1 0 1 0.45 Front(v)

Dec 6 w-2 0.20 0.10 0 0 1 0.50 Stratocu

Dec 6 w-3 0.40 0.25 1 0 0 0.55 Front(nv)

Dec 6 w-4 0.20 0.20 0 0 1 0.35 Stratocu

Dec 6 w-5 0.25 0.15 0 1 0 0.30 Cirrus

Dec 6 w-6 0.20 0.15 0 1 0 0.25 Cirrus

Dec 6 w- 7  0.55 0.15 1 0 0 0.15 ITCZ

Dec 9 x-1 0.10 0.15 0 0 1 0.50 Stratocu

Dec 9 x-2 0.45 0.30 1 0 1 0.55 Front(nv)

Dec 9 x-3 0.25 0.20 0 0 1 0.30 Stratocu

Dec 9 x-4 0.55 0.15 1 0 0 0.13 ITCZ

Dec 12 y-I 0.20 0.25 0 0 1 0.45 Stratocu

Dec 12 y-2 0.60 0.30 1 0 1 0.45 Front(n)

Dec 12 y-3 0.50 0.25 0 0 1 0.35 Stratocu

Dec 12 y- 4  0.95 0.15 1 0 0 0.15 ITCZ

Dec 15 z-1 0.10 0.15 1 0 0 0.35 Frcnt(nv)

Dec 15 z-2 0.15 0.25 1 0 0 0.40 Front(nv)

Dec 15 z-3 0.10 0.10 0 0 1 0.45 Fog

Dec 15 z-4 0.20 0.35 1 0 1 0.50 Frcnt(nv)

Dec 15 z-5 0.30 0.25 0 0 1 0.40 Stratocu

Dec 15 z-6 0.95 0.15 1 0 0 0.15 ITCZ

Dec 13 !-1 0.20 0.20 1 0 1 0.40 Front(v)

Dec 18 !-2 0.20 0.25 1 0 0 0.35 Trough

Dec 18 !-3 0.30 0.15 0 0 1 0.35 Stratocu

Dec 1 !-4 0.10 0.10 0 0 1 0.-5 Fog

Dec I3 i-5 1.05 0.15 1 0 0 0.15 ITCZ

Dec 21 @-l 0.10 0.20 0 0 1 0.45 Stratocu

Dec 21 @-2 0.20 G.25 1 0 1 0.40 Front(nv)

Dec 21 Q-3 0.20 0.15 0 0 1 0.35 Stratocu

Dec 21 @-4 0.95 0.15 1 0 0 0.20 ITCZ

Dec 24 =-1 0.25 0.30 1 0 1 0.40 Front(nv)

Eec 24 z-2 0.20 0.10 0 0 1 0.50 Stratocu

Dec 24 =-3 0.10 0.10 0 1 0 0.3, Trough

Dec 24 =-4 0.15 0.10 0 0 1 0.25 Stratocu

Dec 24 Z-5 0.60 0.15 1 0 0 0.15 ITCZ

Dec 27 $-l 0.15 0.15 0 1 0 0.45 Trough

Dec 27 $-2 0.50 0.30 1 0 1 0.50 Front(nv)

Dec 27 $-3 0.35 0.10 0 0 1 0.30 Stratocu

Dec 27 $-4 0.90 0.13 1 0 0 0.18 ITCZ

Dec 30 %-1 0.20 0.20 0 1 0 0.45 Cirrus

Dec 30 %-2 0.25 0.20 0 0 1 0.30 Stratocu

Dec 30 %-3 1.05 0.15 1 0 0 0.15 ITCZ
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3. Stepwise Discriminant Analysis

The training of a neural net can require a large number of

iterations of the back-propagation procedure. The larger the

network, the more computations that must be performed in each

iteration. Therefore it is advantageous to keep the network as

small as possible. Any inputs that do not actually contribute to

the classification process (e.g., have weights close to zero)

still require computational effort to derive the network.

To avoid the inclusion of such noncontributing inputs it is

useful to perform a preliminary analysis of the data set so that

such inputs can be screened from the data set. The statistical

method used here is the stepwise discriminant analysis program in

the Biomedical Computer Programs P-Series (Dixon and Brown,

197?). In discriminant analysis, cases are divided into groups

and statistical analysis is used to find classification functions

(lirear combinations of the variables) that best characterize the

differences between the grcups. Variables are entered into the

functions one at a time, beginning with the one that contributes

most toward differentiating the groups and ending when the group

separation fails to improvo nitizealy. The contribution of each

variable is reasured by a ratio, called "F-to-Enter," of the sum

of the squared errors tefore and after entry into the equations.

A stepwise discririnint analysis was performed on the cases

in Table 2. The first variable entered into the equations was

"Mult," the presence of multiple clouds (Table 3). As can be

seen in Table 3, the "H.-gh" input value his no contribution

toward discriminating these groups. Therefore the "High" value

9



Table 3. Order of entry of variables into stepwise discriminant
analysis of cases in Table 2.

Entry Number Variable F-to-Enter
1 Mult 270.51
2 North 55.27
3 Del-y 29.95
4 Low 25.85
5 Del-x 2.84

Not entered High 0.00

is removed from the set of inputs in the neural network deriva-

tion described in the next section. It should be emphasized,

howEver, that this result applies only to the data set used here.

The "High" cloud parameter may prove to be very useful in future

attempts to discriminate different classes of features than those

examined here.

4. Neural 'Network Derivation

Before deriving the neural network, the cases were separated

into a dependent, training set and an independent, testing set.

The number of cases needed for training depends on the network

configuration. The minimum required number of training cases

(Ntrain) is heuristically determined by the relation

Ntrain = (r:in -N out)*5.0 (1)

where 111n and Nout are the number of inputs and the number of

outputs, respectively (S. Sengupta, personal communication).

Give n that we have five inputs and eight outputs (i.e., feature

typ s in Table 1), the training sample should have (5-8)*5=65

cascs. The training set should also include an equal number of

casEs of each output class. Thus, the 65 case set divided by

eigit yields 8.125 cases neeled of each type. As can be seen in

10



Table 1, there is an insufficient number of cases of both "Tropi-

cal cyclones" and "Cirrus."

If we exclude these cases from consideration, we now have

five inputs and six outputs, requiring (5+6)*5=55 training cases.

For an equal number of cases of the six types, we now need 9.167

of each. Now the Fog cases must be excluded due to insufficient

numbers (Table 1). With five inputs and five outputs, (5+5)*5=50

trazning cases are needed, and 10 of each type will suffice.

There are enough cases in the remaining five categories (Table 1)

to train the network. Unfortunately, there are no "Frontal band

(with vortex)" cases left for testing, and only two "Trough"

cases left.

Since we do indeed want an independent test of all of the

feature types classified by the network, these two classes are

also excludei. Now we are left with five inputs and three out-

puts. The training set needs (5--3)*5=40 cases, and there must be

at least 11.333 of each type. Thus, we can train the net with 14

cases each of the "Frontal band (no vortex)," "Stratocumulus" and

"ITCZ" features which le. ies 23, 39 and 22 cases, respectively,

for testin3 (Table 1).

4.1 Three-Output Neural Nezr

The network configuration used is depicted in Figure 1. The

five inputs connect to a hidden layer of seven units. The first

hid en layer connects to a second hidden layer containing four

units. Finally, the second hidden layer connects to three out-

put-, each corresponding to one of the three large-scale cloud

fea*ures. Although not explicitly shown in this figure, bias

11
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terrs are also included for all of the hidden-layer units. This

network configuration was somewhat arbitrarily chosen; the only

consideration used was to increase the number of nodes in the

first hidden layer compared to the input layer, and then decrease

the number in the second hidden layer to "fan-in" to the output

layer. Had the results not been satisfactory, some experimenta-

tion in the network configuration would have been tried.

The dependent sample is comprised of the first 14 occur-

rences in the data set (Table 2) of each of the three features.

The network was trained on this 42-case set for 300 cycles before

convergence. For this experiment a variable learning rate was

used to achieve faster con-ergence. The initial learning rate

was 0.005. This value was sufficient to cause rapid initial de-

creases in the total sun of the snuared errors (tss) between the

network outputs and the desired outputs. After about 50 itera-

tions, the tss value had settled down such that it was decreasing

by only about 0.001 per cycle. W<hen this cccurrcd, the process-

ing was manually interrupted, the learning rate was increased to

0.01, and training was reinitiated. Whenever the tss value de-

crease slowed, the learning rate was again gradually increased.

In this fashion, convergence was achieved much faster than with a

constant learning rate. Network convergence becomes apparent

when the tss value begins to oscillate around some low value and

no change in the learning rate will cause it to decrease any

further. In this experiment the final tss was 0.405.

The performance of the network cn tho ic.Pendent sample cases

is indicated in the contingency table prsc'ted in Table 4. The

13



Table 4. Contingency table of dependent sample cases for the
network classifying Fronts, Stratocumulus (Strato) and ITCZs.
The actual (ACTUAL) classes are presented in the columns while
the network-determined (NET) classes are presented in the rows.
Tot and Pcnt indicate the totals and percent correct in each
line.

ACTUAL

Front Strato ITCZ Tot Pcnt
N Front 14 0 0 14 100%
E Strato 0 14 0 14 100%
T ITCZ 0 0 14 14 100%

Tot 14 14 14 42
Pcnt 100% 100% 100% 100%

network performs perfectly (100% correct) on these dependent

sample cases. When tested on the independent sample cases, the

network also performs perfectly (Table 5).

To provide a performance comparison with an alternate tech-

nique, discriminant analysis is again used. This tire, however,

the classification functions are used as classifiers and the

results compared with those of the neural net. A discriminant

analysis was first run on the dependent sample cases. As can be

seen in Table 6, the discriminant analysis classification func-

tions classify 90% of the cases correctly. When applied to the

independent sample cases (Table 7) only 86% were classified

Table 5. As in Table 4 except for independent sample cases.

ACTUAL

Front Strato ITCZ Tot Pcnt
N Front 23 0 0 23 100%
E Strato 0 39 0 39 100%
T ITCZ 0 0 22 22 100%

Tot 23 39 22 84
Pcnt 100q; 100% 100% 100%
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Table 6. As in Table 4 except for dependent sample classifica-

tiors using discriminant analysis (DA).

ACTUAL

Front Strato ITCZ Tot Pcnt
Front 11 1 0 12 92%

D Strato 3 13 0 16 81%
A ITCZ 0 0 14 14 100%

Tot 14 14 14 42
Pcnt 79% 93% 100% 90%

Table 7. As in Table 6 except for independent sample cases.

AC: UA L

Front Strato ITCZ Tot Pcnt
Front 12 1 0 13 92%

D Strato 11 38 0 49 73%
A ITCZ 0 0 22 22 100%

Tot 23 39 22 84
Pont 52% 97% IC,5% 86%

correctly. Thus, the discriminant analysis technique does not

perform as well as the neural network on the same cases (Table 7

vs. Table 5).

4.2 Five-Output Neural Network

Although the above results deoonstrate the ability of the

neural network approach to the problem of classifying large-scale

features, the experirent is limited to only three quite dissimi-

lar types of features. Before the approach can be considered

truly applicable to images in an operational environment, it must

be demonstrated that it can successfully distinguish between more

than three types of large-scale features. For this reason, we

return to the analysis at the beginning of Section 4 in which the

15



requirements of Equation (1) led to paring of the data set.

There was a point in the paring process where the potential

neural net had five inputs and five outputs, requiring 10 train-

ing cases of each type. The five output classes were "Frontal

Band (no vortex)," "Frontal Band (with vortex)," "Trough,"

"Stratocumulus" and "ITCZ." This network was not used at that

time because there were not enough "Frontal band (with vortex)"

and "Trough" cases left for an independent test of the network.

In an effort to provide a net that distinguishes a wider range of

classes, it is nevertheless considered useful at this time to

derive a neural network using this larger data set. The depend-

ent sample results may in themselves be enlightening. In the

author's experience so far with neural networks, their perform-

ance seers not to degrade as much when applied to an independent

sample as do conventional statistical methods such as regression

or discriminant analysis. in addition, the net can still be

partially verified using the available independent sample cases.

There are 27 "Frontal band (no vortex)," 0 "Frontal band (with

vortex)," 2 "Trough," 43 "Stratocumulus" and 26 "ITCZ" cases

available for such an independent test.

The network configuration used for this experiment is de-

picted in Figure 2. As before, there are five inputs leading to

seven hidden units. This first hidden layer is connected to a

second hidden layer of six units. The output layer has five

units, each corresponding to one of the five large-scale feature

typ, s.
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As in the first network derivation (Section 4.1), the de-

penjent sample is comprised of the first 10 occurrences of each

feature type. The network was trained on this 50-case set, again

using the technique of a variable learning rate. The network

converged to a tss value of 7.66 after 600 iterations.

The network was next verified using the dependent sample

cases (Table 8). As in the earlier network results, the "Frontal

band (no vortex)," "Stratocumulus" and "ITCZ" classifications are

very good (90%, 100% and 100% correct, respectively). The new

"Trcugh" category is also classified with 100% accuracy. The

netw'ork has difficulty distinguishing "Frontal band (with

vortex)" cases (cnly 6C% ccrrect) since they are so similar to

the "Frontal band (no vortex)" cases (Table 8), thus lowering the

overall accuracy to 90% for the dependent sample. It seems

likely that some more sophisticated shape-measurement input would

help the net to classify these cases more accurately.

In the indepenjent sarple test (Table 9), the "Stratocumu-

lus" and "ITCZ" cases are again classified very accurately (9;1

Table 8. As in Table 4 except for the netw:crk classifying Fron-
tal banJa (without vortices) (Front), Frontal bands (with vor-
tices) (Fr/Vort), Troughs, Stratocumulus (Strato) and ITCZs.

ACTUAL

Front Fr/Vort Trough Strato ITCZ Tot Pcnt
Front 9 4 0 0 0 13 69%

N Ir,/Vcrt 1 6 0 0 0 7 86%
E Trough 0 0 I0 C 0 10 100%
T Etrato 0 0 0 10 0 i0 100%

ITCZ 0 0 0 0 10 10 100%

Tot 10 i0 10 I0 10 50
I ont 90% 60% 100% 100% 100% 90%
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Table 9. As in Table 8 except for independent sample cases.

ACTUAL

Front Fr/Vort Trough Strato ITCZ Tot Pcnt
Front 18 0 0 1 0 19 95%

N Fr/Vort 7 0 0 0 0 7 0%
E Trough 2 0 2 0 0 4 50%
T Strato 0 0 0 42 0 42 100%

ITCZ 0 0 0 0 26 26 100%

Tot 27 0 2 43 26 98
Pcnt 67% -- 100% 98% 100% 90%

and 100% correct, respectively). The two "Trough" cases are also

correctly classified. The net has difficulty, though, with the

"Frontal band (no vortex)" cases; seven are mistaken as "Frontal

band (with vortex)" and two are mistaken as "Trough." Neverthe-

less, the overall network performance remains at 90% correct.

Again, the absence of any "Frontal band (with vortex)" and addi-

tional "Trough" cases reduces the significance of this independ-

ent sample test.

As in the first experiment, discriminant analysis provides

an alternate methodology for comparison. As with the neural net,

the "Stratocumulus" and "ITCZ" cases were perfectly classified

(Table 10) and the "Frontal band (with vortex)" cases were 60%

correct. Two of the "Trough" cases were incorrect, as were four

"Frontal band (no vortex)" cases which lowers the accuracy to

80%. Thus, the neural method seems superior to discriminant

analysis for the five-category classification as well.

When the discriminant functions were tested on the independ-

ent sample, the performance actually increases to 89% (Table 11).

This improved independent sample performance is almost certainly
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Table 10. As in Table 8 except for dependent sample classifica-

tions using discriminant analysis.

ACTUAL

Front Fr/Vort Trough Strato ITCZ Tot Pcnt
Front 6 4 0 0 0 10 60%
Fr'Vort 4 6 2 0 0 12 50%

D Trough 0 0 8 0 0 8 100%
A Strato 0 0 0 10 0 10 100%

ITCZ 0 0 0 0 10 10 100%

Tot 10 10 10 10 10 50
Pcnt 60% 60% 80% 100% 100% 80%

Table 11. As in Table 10 except for independent sample cases.

ACTUAL

Front Fr/Vcrt Trough Strato ITCZ Tot Pcnt
Front 16 0 0 0 0 16 100%
Fr,Vort 11 0 0 0 0 11 0%

D Trough 0 0 2 0 0 2 100%
A Strato 0 0 0 43 0 43 100%

ITCZ 0 0 0 0 26 26 100%

Tot 27 0 2 43 26 98
Pcnt 59% -- 100% 100% 100% 89%

due to the independent sample bias toward "Stratocumulus" and

"ITCZ" cases. It makes no sense for a statistical method to

perform better on independent cases than it does on the develop-

mental set. Of course, it is likely the neural net independent

set statistics would also benefit from this bias.

4.3 Eight-Output Neural Network

7.s a final experiment, we again return to the analysis of

the data set with respect to Equation (1). If we are not con-

cerned with an independent sample test, there are nearly enough

dependent sample cases to derive a net with eight output classes.

20



A total of 65 cases (8.125 of each type) is needed. If we assume

that eight cases of each type are enough, it can be seen from

Table 1 that all except the "Cirrus" category have the required

number and the "Cirrus" is only short by one case. With the

caveat that the developmental sample may not be sufficient, we

can derive a neural net and, hopefully, still learn from the

resul ts.

The network configuration used is depicted in Figure 3.

Agair., Liere are five inputs leading to seven hidden units. The

second hidden layer contains eight units as does the output

laye,.

As before, the first eight occurrences of each feature type

(or all seven "Cirrus" cases) are used to form a 63-cases depend-

ent sample. The network converged with a tss of 15.07 after 600

iterations.

The dependent sample verification is presented in Table 12.

The net performs well (83% correct), although it clearly has

trouble with the "Frontal band (with vortex)" and "Cirrus" cate-

gorics (Table 12). Again, a more sophisticated shape measure

would likely assist in these classifications.

The independent sanple test (Table 13) is again strongly

biased toward the inclusion of "Frontal band (no vortex),"

"Stratocumulus" and "ITCZ" cases. The network continues to

misclassify "Frontal band (with vortex)" cases. Notice also that

seven of the "Stratocumulus" cases are misclassified as "Fog"

(Table 13). It is clear that some new type of input is needed to

separate "Fog" from "Stratocumulus" since both phenomena are of
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Table 12. As in Table 4 except for the network classifying
Frontal bands (withou vortices) (Frnt), Frontal bands (with vor-
tices) (Fr/Vor), Troughs (Trf), Stratocumulus (Strt), Fog, Tropi-
cal Cyclones (TrCy), Cirrus (Cirr) and ITCZs.

ACTUAL

Frnt Fr/Vor Trf Strt Fog TrCy Cirr ITCZ Tot Pcnt
Frnt 8 5 0 0 0 0 2 0 15 53%
Fr/Vor 0 3 0 0 0 0 0 0 3 100%

N Trf 0 0 8 0 0 0 1 0 9 89%
E Strt 0 0 0 7 2 0 0 0 9 78%
T Foa 0 0 0 1 6 0 0 0 7 86%

TrCy 0 0 0 0 0 8 0 0 8 100%
Cirr 0 0 0 0 0 0 4 0 4 100%
ITCZ 0 0 0 0 0 0 0 8 8 100%

Tot 8 8 8 8 3 8 7 8 63
Pcnt 100% 38% 100% 88% 75% 100% 57% 100% 83%

Table 13. As in Table 12 except for independent sample cases.

ACTUAL

Frnt Fr/Vor Trf Strt Fog Crr ITCZ Tot Pcnt
Frit 20 2 0 0 Q 0 0 0 22 91%
Fr/'Vor 4 0 0 ? 0 0 0 0 4 100%

N Trf 0 0 3 0 0 0 0 0 3 100%
E Strt 1 0 0 is 0 0 0 0 39 97%
T Foc 0 0 0 i 0 0 0 8 13%

TrCy 2 0 1 0 0 0 0 0 3 0%
Cirr 2 0 0 0 0 0 0 0 2 0%
ITCZ 0 0 0 0 0 0 0 28 28 100%

Tot 29 2 4 45 1 0 0 28 109
Pcrt 69% C0 7S! 84% 100% -- 100% 83%

similar cloud type and dimensions. The overall percent correct

stays the same, however (83%).

As before, discriminant analysis is used for comparison.

The dependent sample results (Table 14) show a decrease in over-

all performance (73% vs. 83%) compared to the neural net, even

thouch the "Frontal band (with vortex)" cases are actually pre-

dictcA with more skill (Toile 12 vs. Table 14).
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Table 14. As in Table 12 except for dependent sample classifica-

tions using discriminant analysis.

ACTUAL

Frnt Fr/Vor Trf Strt Fog TrCy Cirr ITCZ Tot Pcnt
Frnt 4 2 0 0 0 0 2 0 8 50%
Fr/Vor 4 6 0 0 0 0 1 0 11 55%
Trf 0 0 8 0 0 0 2 0 10 80%

D Strt 0 0 0 5 1 0 0 0 6 83%
A Fog 0 0 0 3 7 0 0 0 10 70%
TrCy 0 0 0 0 0 8 0 2 10 80%
Cirr 0 0 0 0 0 0 2 0 2 100%
ITCZ 0 0 0 0 0 0 0 6 6 100%

Tot 8 8 8 8 8 8 7 8 63
Pcr.t 50% 75% 100% 63% 88% 100% 29% 75% 73%

In the independent sample test (Table 15), the overall

performance decreases only slightly to 72%. The apparent skill

in handling the "Frontal band (with vortex)" cases is not appar-

ent in the independent sample test, however. In addition, the

discriminant functions have even more difficulty distinguishing

"Fog" and "Stratocumulus" than did the neural net (Table 15 vs.

Table 13).

Table 15. As in Table 14 except for independent sample cases.

ACTUAL

Frnt Fr/Vor Trf Strt Fog TrCy Cirr ITCZ Tot Pcnt
Frnt 13 2 0 0 0 0 0 0 20 90%
Fr'Vor 9 0 1 0 0 0 0 0 10 0%
Trf 0 0 2 0 0 0 0 0 2 100%

D Strt 0 0 0 29 0 0 0 0 29 100%
A Fog 0 0 0 16 1 0 0 0 17 6%

TrCy 2 0 1 0 0 0 0 0 3 0%
Cirr 0 0 0 0 0 0 0 0 0 --

ITCZ 0 0 0 0 0 0 0 28 28 100%

Tot 29 2 4 45 1 0 0 23 109
Pc*t 62% 0% 50% 64% 100% .. .. 100% 72%
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4.4 Discussion

The common thread to these results is that the neural net-

work technique is better able to discriminate the feature classes

than is discriminant analysis. The reason for this difference is

the way each method parses the decision space. In Peak's (1990)

Figure 5 and the related discussion, it is shown how different

neural net configurations can separate a problem space into

various geometric regions. The most complex regions result from

the uve of nonlinear neural nodes in multiple layers. The dis-

criminant analysis procedure, however, is linear in its combina-

tion of input contributions. Thus, the most complex decision

regions that can result are convex ones, which are comparable to

those defined by a two-layer neural net (Peak, 1990, Fig. 5).

The additional power of a second hidden layer allows neural

nets to define concave or even embedded decision regions. Thus,

neural nets are inherently superior to discriminant analysis for

problems with complex problem spaces.

The set of inputs used in these experiments is probably

insufficient for distinguishing such similar features as frontal

bands with vs. without vortices, and stratocumulus vs. fog. It

would be desirable to have a more complex shape measure than

simple zcnal/meridional dimensions. For example, a medial-axis

transformation might be used to determine the major- and minor-

axis lengths of the feature. In addition, actual cloud types

would be very useful in place of the simple cloud heights used.

Even some measure of the cloudiness density might be used, an

indicator which might enable separation of stratocumulus from
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fog. The problem with adding more inputs is that the number of

training cases required increases by five for each new input.

Since the data set was just barely large enough for the experi-

ments presented here, it was not feasible to begin adding new

input data types in these experiments.

5. Image Segmentation Considerations

The ultimate goal of this work is to provide an automated

image analysis. The data used in the above experiments was

acquired only after significant effort by a human interpretation

expert in two areas: dividing the image into meaningful, large-

scale features and then identifying the cloud types contained in

each feature. Automated approaches for cloud-typing are present-

ly under development at 'NOARL-W. However, the image segmentation

problem remains to be addressed. In this section a preliminary

experiment in image segmentation will be presented as a possible

approach for future research efforts.

There are two approaches to the segmentation problem. In

the first approach, the >mage is analyzed to find strong gray-

scale gradients that correspond to object edges. Once all of the

edges are found, the image is separated into regions with common

bouniaries. The main difficulty with this approach is that edge

detection operators not only respond to gradients that actually

define region boundaries, but also to gradients that indicate

regicn dtails or shadows. For images containing regions of

nearly the same gray-shade, critical edges may not be detected.

In the satellite image problem, adjacent cloud features would be

difficult to distinguish in this fashion.
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The second segmentation approach involves clustering of

regions with similar gray-scales. The analysis begins at the

pixel level where some measure of similarity is used to decide

which adjacent pixels are most similar. These pixels are com-

bined to form new regions. The process continues as similar

adjacent regions are combined until the desired image segmenta-

tion is achieved. In this process, it is not the edges that are

important, but rather the homogeneity of the interior of each

feature.

In the satellite image segmentation problem, cloudy regions

have generally lighter gray-scales compared to the darker back-

ground ocean or land regions. This characteristic would tend to

suppcrt the use of the clustering methodology. The unanswered

question is what happens when there are adjacent cloud features.

Both methodologies may have difficulty in such situations. There

may not be well-defined edges when features are adjacent. On the

cther hand, adjacent cloudy regions may tend to be combined due

to similar gray-shades.

The approach presented here is called the Hierarchical

Stepwise Optimization (HSWO) algorithm (Beaulieu and Goldberg,

1989). As will be shown, it appears that the region-combining

function used by HSWO can accomplish clustering while (hopefully)

keeping such adjacent cloudy regions from being combined.

The basis for clustering techniques is the progressive

combination of regions, which can be represented by a tree

(Fig. 4). In the tree, segments at lower levels are joined to

form segments at higher levels. Through a mathematical deriva-
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(a) (b)

Figure 4. (a) Segment combination heirarchy during the cluster-
ing process (bottom-to-top) and (b) corresponding segment tree
(From Beaulieu and Goldberg, 1989).

tion not repeated here, Beaulieu and Goldberg (1989) arrived at a

critericn for defining the similarity of adjacent regions. This

similarity is defined in terms of the cost of combining adjacent

regions:

N i *
--= - (x i  - xj)2 (2)

Ni + Nj

where the subscripts i and j denote adjacent regions i and j, C

is the Cost cf combining the two regions, N is the number of

pixels in a region and x is the mean gray-scale value of the

pixels contained in a region. The procedure is to calculate the

Cost cf combining any two adjacent regions in the image. The two

regior:s that result in the lowest Cost are determined to be the

most similar and, therefore, are selected to be combined. Notice

that the Cost function is equal to zero when adjacent regions

have the same average gray-scale. Thus, the HSWO procedure first

combi:.es all of the homogeneous adjacent pixels. As the average

gray-scale difference increases, the Cost value rises exponen-
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tially. Since the numerator of Equation (2) is the square of the

regicn sizes and the denominator is only their sum, larger re-

gions tend to have higher costs. Thus, the scheme tends to

distinguish large-scale regions better than small-scale regions.

For the purpose of large-scale feature identification, this

property is desirable. The ratio in Equation 2) also ensures

that the cost of combining regions of about the same size is

highcr than the cost of annexing a small region into a large one.

It is hoped that this property will cause the HSWO method to

distinguish adjacent large-scale features rather than combining

them.

The HSWO algorithm is structured to combine the two lowest-

cost regions repeatedly until only a single region (the entire

image) remains. For a meaningful image segmentation, the merging

procejure must be stopped after the noisy, small-scale regions

are 7sirilated but before the ren ingful, large-scale regions

are ccmbinei. Beaulieu and Goldberg (l52?) present the example

of an image of a checkerboard (Fig. 5). The minimum Cost func-

tion value is plctted as a function cf the number of segments or

iterstions (Fig. 6). As the sinilar regions are combined (fol-

lowirg the carve from right to left), the minimum Cost grows

gradually. Once the checkerboard squares have all been defined,

the system begins to combine then as well. These combinations

causc a jump in the minimum Cost function curve (Fig. 6). Thus,

the correct stopping point is just before the rapid increase in

minirum Cost. Ways to halt the pro~ess based on the minimum Cost

function increase are a topic for further research and experimen-
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Figure 5. Image of a checkerboard used to demonstrate the HSWO
algorithm stopping point (From Beaulieu and Goldberg, 1989).

211 II

Figure 6. Minimum cost criterion value curve for the checker-

board segmentation problem. Arrow indicated optimum stopping
point (Fron Beaulieu and Goldberg, 198D).

tation, because the shape of the curve depends cn the type of

image being segmented. It seems reasonable that a satellite

image with dark, background regions and bright, cloud features

would experience a similar jump that might be detectable as being

a gooi stopping point.
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As a demonstration of the HSWO methodology, a satellite

image was chosen for segmentation. The image (Fig. 7) is the

GOES-W visible image for 2045 UTC on 15 Nov. 1983. The region of

interest is the western North Pacific from 105 0 W to 175 0 E and

from the equator to 550 N. This region contains two frontal

bands, two stratocumulus regions and a broad ITCZ. Because the

actual gray-scale values are not available, it was decided to use

simple percent cloudiness of 5°x5 ° squares. The visually-esti-

mated cloudiness percentages are presented in Fig. 8.

The HSWO algorithm was prcgranmed in the Prolog language

because of its ability to specify the regions dynamically.

Initially, each data square is asserted as a Prolog fact contain-

ing its cloudiness value and a list of its adjacent neighbors.

As the regions are combined, the individual region facts are

deleted from the Prolog database and replaced by a new fact

representing the combined region, with its new average percent

cloudiness and a new, combined list of adjacent regions. In this

way, Prolog is a ruch easier and efficient irplementation lan-

guage than would be one such as C that requires fixed array

storige.

At this time, the problem of when to stop the routine is not

addressed because the goal of this experiment is to demonstrate

the FSWO application to a satellite image. Instead, the evolving

segmontation is examined and the process stopped when the image

segmentation appears to be at its optimum.

The data values in Fig. 8 were processed by the HSWO pro-

gram. The resulting regions are depicted in Fig. 9. Here, there
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Figure 7. GOES-W visible image used to test the HSWO algorithm.

Dark lines define 5cx5o squares from which cloudiness percentages

are estimated.
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are four distinct cloud features plus a non-cloudy, background

regicn (not numbered in Fig. 9 for clari-y). To demonstrate the

actual cloud regions distinguished in the image, the four cloud

feature segments are overlaid on a noncloudy template (Fig. 10).

The long, frontal band in the western Pacific is captured quite

well by the algorithm. The main body of the second front in the

Pacific Northwest is also captured, but its thin, trailing fron-

tal hand was combined into the noncloudy background region rather

than into region 2 (Fig. 10). Also, the stratocumulus regions

have been lost. It is likely that the use of actual gray-scales

and higher resolution would provide a better segmentation of

these features. It is interesting that the broad ITCZ is seg-

mented well, bt Y_ orthard meander from 1100-133CW is not

incluJed.

These r-eliminary results are very encouraging. A digitized

gray-scale transform of this image, with 60 pixels-per-inch reso-

lution, was acquired by the author. Unfortunately, there has not

yet teen enough time to process the data using HSWO. Such a

large data set may be too big for the PC-based routine. The

avai:ability of Quintus Frolog on the TESS 7achine would provide

the computing power required. Until that Prolog is available,

the resolution may have to be reduced by averaging to make the

data set more manageable.

6. Conclusions

Three experiments using neural networks to distinguish

large-scale cloud features are presented. The data used are

taken from GOES-W images from the period October-December 1983.
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Figure 9. Segmentation regions deri4ved by the HSWO algorithm for

thei data depicted in Fig. 8. Background region not nurnbered for

ciar.'I:.

'Pigure 10. HSWO-derived image segments Lfron Fig. 6 overlaid on

the regions in Fig. 9.
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Large-scale features and cloud types in the images were catego-

rizei by Mr. R. Fett of NOARL-W.

There are eight different cloud features identified on the

images. These include "Frontal band (no vortex)," "Frontal band

(with vortex) ," "Trough," "Stratocumulus," "Fog," "Tropical

cyclone," "Cirrus" and "ITCZ." When classified by a neural net,

each feature is assigned a different network output node.

The set of five inputs to the network include the zonal and

meridional feature dimensions, the presence of multi-level or low

clouds, and the north-most latitude of the feature. A potential

high cloudiness input was eliminated when discriminant analysis

showed that it had no contribution to the discrimination of the

feature groups.

.hen the data sct was analyzed to determine the applicable

netwcrk ccnfigurations, it was found that only the "Frontal Land

(no vortex)," "Stratocumulus" and "ITCZ" features were present in

sufficient quantity to provide encugh cases for both training and

testing a neural network. The network derived to classify these

three features is very successful in that all 42 dependent sample

and all S4 independent sample cases are correctly classified.

This performance compares favorable with the alternate method,

disciiminant analysis, which could only classify 90% and F6% of

the dependent and independent sample cases, respectively.

By foregoing the need for a copplete independent sample, the

number of classes was expanded to five by adding the "Frontal

band (with vortex)" and "Trough" faitures. The resulting neural

network is able to classify 9C of both the 50-case dependent,
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and the 98-case independent samples correctly. The independent

sample is strongly biased because it contains no "Frontal band

(with vortex) and only two "Trough" cases. The discriminant

analysis method can only categorize 80% of the dependent sample

cases correctly. Discriminant analysis does categorize 89% of

the independent sample cases, but this apparent skill is almost

certainly anomalous due to the sample bias.

A third experiment was pcrformed in which 63 cases are used

to derive a neural net to classify the eight different feature

types. The dependent sample results show that the neural net can

classify 8231 of these cases correctly compared to only 73% for

discriminant analysis. Although the injependent sample is inade-

quate for tosting this network, the results again indicate supe-

rior perforrance to discriminant analysis (83% correct vs. 72%

corre:t, respectively).

These results indicate that neural networks can classify

large-scale cloud features with surprising skill using only very

crude input parameters. The eventual inclusion of an automated

cloud classification should provide even better input information

for future neural net experiments.

The problcm of image segmentation is also addressed in this

study. A prototype image segmentation routine is developed based

on the Hierarchical Stepwise Optimization (HSWO) algorithm of

Beaulieu and Goldberg (1985). When tested on a satellite image,

the routine seems to be able to segment cloud features while

retaining valuable information about their shapes.
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Further research in using the HSWO rcutine is rzcommended.

The goal is to develop this methodology to the point where cloud

features can be distinguished. If one of the automated cloud

classification routines also becomes available, neural classifi-

cation experiments similar to those presented here could proceed

using automated data exclusively.
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